(Vanishing) Twist in the Saddle-Centre and Period-Doubling Bifurcation

نویسندگان

  • H. R. Dullin
  • A. V. Ivanov
چکیده

The lowest order resonant bifurcations of a periodic orbit of a Hamiltonian system with two degrees of freedom have frequency ratio 1 : 1 (saddle-centre) and 1 : 2 (period-doubling). The twist, which is the derivative of the rotation number with respect to the action, is studied near these bifurcations. When the twist vanishes the nondegeneracy condition of the (isoenergetic) KAM theorem is not satisfied, with interesting consequences for the dynamics. We show that near the saddle-centre bifurcation the twist always vanishes. At this bifurcation a “twistless” torus is created, when the resonance is passed. The twistless torus replaces the colliding periodic orbits in phase space. We explicitly derive the position of the twistless torus depending on the resonance parameter, and show that the shape of this curve is universal. For the period doubling bifurcation the situation is different. Here we show that the twist does not vanish in a neighborhood of the bifurcation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation structure of a model of bursting pancreatic cells.

One- and two-dimensional bifurcation studies of a prototypic model of bursting oscillations in pancreatic beta-cells reveal a squid-formed area of chaotic dynamics in the parameter plane, with period-doubling bifurcations on one side of the arms and saddle-node bifurcations on the other. The transition from this structure to the so-called period-adding structure is found to involve a subcritica...

متن کامل

Complex Dynamics in Swing Equations of a Power System Model

Complex dynamics in the reduced swing equations of a power system are investigated. As the change of bifurcation parameter μ, the system exhibits complex bifurcations, such as saddle-node bifurcation, Hopf bifurcation, cyclic fold bifurcation and torus bifurcations and complex dynamics, such as periodic orbits, quasiperiodic orbits, period-doubling orbits and chaotic attractors which link with ...

متن کامل

Local Bifurcations in DC-DC Converters

Abstract Three local bifurcations in DC-DC converters are reviewed. They are period-doubling bifurcation, saddle-node bifurcation, and Neimark bifurcation. A general sampled-data model is employed to study types of loss of stability of the nominal (periodic) solution and their connection with local bifurcations. More accurate prediction of instability and bifurcation than using the averaging ap...

متن کامل

Local and Global bifurcations in Three-Dimensional, Continuous, Piecewise Smooth Maps

In this work, we study the dynamics of a three-dimensional, continuous, piecewise smooth map. Much of the nontrivial dynamics of this map occur when its fixed point or periodic orbit hits the switching manifold resulting in the so-called border collision bifurcation. We study the local and global bifurcation phenomena resulting from such borderline collisions. The conditions for the occurrence ...

متن کامل

Delay-Induced Multistability Near a Global bifurcation

We study the effect of a time-delayed feedback within a generic model for a saddle-node bifurcation on a limit cycle. Without delay the only attractor below this global bifurcation is a stable node. Delay renders the phase space infinite-dimensional and creates multistability of periodic orbits and the fixed point. Homoclinic bifurcations, period-doubling and saddle-node bifurcations of limit c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003